From Fast to Faster

An Overview of Network Architecture for AI Workloads

Romeo Lazar Sales Manager Eastern Europe Corning Optical Communications Mai 2024

The Ethernet and InfiniBand (Technology) Roadmap

What Are We Going to Talk About?

How Can The Cabling be Done?

How Can The Cabling be Done?

Transceiver Roadmap and Backbone of Choice

Transceiver Speed	10G	25G	4(0G	50G		100G			200G			40	0G			80	0G		1.6T
Pluggable Module	SFP	SFP	SFP /	QSFP	SFP / QSFP	SFP / SFP-DD / QSFP / QSFP-DD / OSFP			QSFP / QSFP-DD / SFP-DD			QSFP / QSFP-DD / OSFP			QSFP / QSFP-DD / OSFP			QSFP / QSFP-DD / OSFP / OSFP-XD		
SMF	LR	LR	LR4 FR4	PLR4 PLRL4	LR FR	LR FR DR LR4 CWDM4	N/A	PSM4	LR4 FR4 FR DR	N/A	DR4	LR8 FR8 FR4 LR4-6 LR4-10	2FR4	DR4 DR2 DR4-2	N/A	LR8 FR8	2LR4 2FR4 FR4	DR4 DR4-2	2DR4 2PLR4 8FR DR8 DR8-2	DR8 DR8-2
MMF	SR	SR	BiDi SWDM4	SR4 eSR4	SR	BiDi SWDM4 VR SR	SR2	SR4 eSR4	N/A	VR2 SR2	SR4	N/A	N/A	SR4.2 VR4 SR4	SR8	N/A	N/A	VR4.2 SR4.2	SR8 VR8 2VR4 2SR4	VR8.2 SR8.2
Fibers per transceiver	2	2	2	8	2	2	4 (2x2)	8	2	4 (2x2)	8	2	4 (2x2)	8	16 (16x1)	2	4 (2x2)	8	16 (8x2 or 16x1)	16 (8x2 or 16x1)
Base-2	•	•	•	0	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Base-8	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Base-12	•	•	•	0	•	•	•	0	•	•	0	•	•	0	0	•	•	0	0	0
Base-16															•				•	•
Base-24	•	•	•	0	•	•	•	0	0	0	0	0	0	0	0	0	0	0	0	0
 Allow full scalability, 100% fiber utilization and migration Allow scalability and migration. Limited backward compatibility with existing Base-8 and Base-12 backbones / installations Scalability and migration complexity in some degree (base conversion components, partial fiber utilization) 					Trur	Base-2 hks with 2-fib increments	er Trur	Base-8 hks with 8-fib increments	er Tr s	Backbone Base-12 unks with 12 er increment	- Tr s fib	Base-16 unks with 16 er increment	i-s Tr fib	Base-24 unks with 24 er increment		SFP		QSFP-DD		OSFP

Not recommended due to scalability limitations and high complexity

The connector in the backbone is relevant for: Flexibility, Migration to new technologies, Scalability, TCO

MPO-12 Interface

MPO-16 Interface

MPO-12 Interface

LC Dx Interface

Picture source: Ethernet Alliance

SFP-DD

OSFP-XD

QSFP

MPO-12 Two Row

Corning's Way of Working

OSFP Optical Interfaces

• Footprint available in the market

Footprint available and high adoption expected

• Transceiver footprint not yet available

*1.6T Transceivers using LC Duplex are also expected to be launched to the market

An Overview of Network Architecture for Al Workloads

Interconnecting MDA to EDA with EDGE8®

Al is already helping to discover new levels of efficiency, but the trade-off is a massive increase in demand for bandwidth, but also power and water for cooling

High Performance Computing, Artificial Intelligence & Machine Learning

Image Source: ChatGPT

ChatGPT was trained using **10,000 of Nvidia's GPUs** clustered together in a supercomputer on Azure.

Moreover, there plans for significantly increased GPU usage, with speculation that their **upcoming Al model** may require as many as **10 million GPUs**.

NVIDIA dominates the market for chips used in AI systems, with about 90% of the GPU market for ML.

Current AI Training workloads require large GPU clusters (32k) driving need for power and cooling efficiency and high bandwidth in the MTDC and Cloud

Two Different Approaches to AI/ML

CORNING

Source: NVIDIA DGX SuperPOD. Reference Architecture Featuring NVIDIA DGX H100 Systems

An Overview of Network Architecture for Al Workloads

CORNING Image Source: NVIDIA DGX SuperPOD https://www.youtube.com/watch?v=NoCdoBI9vPw

NVIDIA DGX-H100 Compute Node (DGX-Data Center GPU Accelerated)

- For most machine learning workloads, both GPU and CPU work together to maximize performance.
- The CPU performs data cleaning on raw datasets before training models.
- Once this data is pre-processed, the CPU sends it to the GPU for parallel training/inference.
- After which, the GPU accelerates parallelizable math operations during training.
- Both are necessary for high-performance machine learning.

Compute Network Fabric

DGX-H100 Node (Sever) Networking

- 1. **Compute Fabric:** There are 4xDual Port OSFP on each Node (8x400G connections)
- 2. There are 8 Leaf switches for each Scalable Unit (POD)
- 3. The fabric is rail-optimized, meaning that all the same Host Channel Adaptors (HCA) from each node are connected to the same leaf switch.
- 4. The fabric is built using Quantum 9700 Infiniband switches using 800Gbps/ Twin port OSFP transceivers

NVIDIA's Reference Architecture as Example

The system is built upon building blocks of scalable units (SU), each containing 32 DGX H100 systems, which provides for rapid deployment of systems of multiple sizes.

Each SU has **256 GPUs**, this 32 DGX H100 in 8 racks

Example of Dedicated Network for AI/ML utilizing NVIDIA InfiniBand

		SU	Node	GPU	Ś	Switch Counts	Cable Counts			
	Count	Count	Count	InfiniBand Leaf	InfiniBand Spine	InfiniBand Core	Node- Leaf	Leaf- Spine	Spine- Core	
	٢	4	128	1024	32	16		1024	1024	1024
Small Cluster	l	8	256	2048	64	32		2048	2048	2048
Madium Cluster	ſ	16	512	4096	128	128	64	4096	4096	4096
weatum Cluster	l	32	1024	8192	256	256	128	8192	8192	8192
Large Cluster	-C	64	2048	16384	512	512	256	16384	16384	16384

CORNING Source: NVIDIA DGX SuperPOD. Reference Architecture Featuring NVIDIA DGX H100 Systems

Cabling a Scalable Unit (POD)

Each POD requires 256 MTP-8 connections (8 per H100 Node) to the Leaf Switches

Innovative Solutions in Progress: Partnering with Customers for Future Success

Jumpers (Patch-cords) SMF, MMF

Bundle Jumpers SMF, MMF

Trunks (w/pulling grip) SMF, MMF

EDGE Distribution System SMF

Cabling a "Medium Cluster"

Backbone cabling (512 trunks – 16 trunks per Leaf) will substitute 8,192 individual patch-cords, managing complexity across the data center

Power Requirement

- Due to power consumption of server rack (41 kW each) a full row of servers cannot be located in an existing DC design
- ✓ Base design is 256 GPUs/SU (Scalable Unit)
- There are 8 Production racks in a POD, meaning 8 racks x 32 GPUs

CORNING Source: NVIDIA DGX SuperPOD. Reference Architecture Featuring NVIDIA DGX H100 Systems

Cabling and Direct Liquid Cooling

CORNING Sources: NVIDIA DGX SuperPOD. Reference Architecture Featuring NVIDIA DGX H100 Systems; https://docs.nvidia.com/networking/display/cs8500sysum/system+cooling+design+overview; https://lenovopress.com/LP0636#animation

Latest NVIDIA's DGX B200 (Blackwell GPU) Architecture

To achieve the most scalability, DGX SuperPOD is powered by several key NVIDIA technologies, including:

- NVIDIA DGX B200 system—to provide the most powerful computational building block for AI and HPC.
- > NVIDIA NDR (400 Gbps) InfiniBand—bringing the highest performance, lowest latency, and most scalable network interconnect.
- > NVIDIA NVLink® technology—networking technologies that connect GPUs at the NVLink layer to provide unprecedented performance for most demanding communication patterns.

Component	Technology	Description
Compute nodes	NVIDIA DGX B200 system with eight B200 GPUs	The world's premier purpose-built AI systems featuring NVIDIA B200 Tensor Core GPUs, fifth-generation NVIDIA NVLink, and fourth-generation NVIDIA NVSwitch™ technologies.
Compute fabric	NVIDIA Quantum QM9700 NDR 400 Gbps InfiniBand	Rail-optimized, non-blocking, full fat-tree network with eight NDR400 connections per system

CORNING

Sources: NVIDIA DGX B200 https://resources.nvidia.com/en-us-dgx-systems/dgx-b200-datasheet; B200 Architecture https://docs.nvidia.com/dgx-superpod/reference-architecture-scalableinfrastructure-b200/latest/

InfiniBand Roadmap

*Link speeds specified in Gb/s at 4X (4 lanes)

Source: InfiniBand Trade Association

Current InfiniBand switches utilize 800G OSFP ports, employing dual 400G Next Data Rate (NDR) ports. This configuration uses 8 fibers per port, resulting in 64x400G ports per switch. It's highly likely that the forthcoming generation of switches, whatever name they carry, will adopt Extreme Data Rate (XDR) speeds. This translates to 64x800G ports per switch, also utilizing 8 fibers per port – mostly single mode fiber. This 4-lane (8-fiber) pattern seems to be a recurring motif in the InfiniBand roadmap, summarized in Table-1, utilizing even faster speeds in the future.

AI/ML and Structured Cabling

Al Cluster Investment

- More than **95% of the network cost** for the AI Server cluster is related to the **active gear**
- Power and Cooling investments will also be material
- Fiber connectivity is facilitating the networking speed and processing scalability.
- Fiber requirements for High Performance compute and Al networks is 5 times more than the traditional data center production network
- Point-to-Point bundled jumper assemblies can accommodate smaller clusters, larger scale-outs need structured cabling solutions
- Roadmaps for Ethernet and InfiniBand transceivers will scale with Base-8 fiber backbones
- Elements of the structured cabling system (Passive TAPs, Port-Breakout) will enable data center operators to gain more value from the fiber infrastructure

Planning for Migration

- The path to higher speeds will always depend on your unique needs.
- You may be happy with 40G now but planning to **upgrade to 100G** four years from now. Or maybe you are working with 400G and have your **eyes set on 800G** in five years: Migration will always vary based on your timeline and the available technologies in the market.
- But in most cases, **Base-8 will provide the ideal level of flexiblity to meet your needs throughout your transition**.
- Corning's EDGE8 structured cabling solutions will support your transition needs, doesn't matter if we talk about Ethernet or InfiniBand

Connect with us:

lazarr@corning.com

linkedin.com/in/RomeoLazar

Corning Optical Communications

Corning Optical Communications

@CorningOpComm